Skip to content
My-Project
Search
K
Main Navigation
首页
导航
自考
前端
后端
Appearance
Menu
Return to top
目录
02324 离散数学
等价演算
双重否定
p
=
¬
(
¬
p
)
p = \neg(\neg p)
p
=
¬
(
¬
p
)
交换
p
∨
q
=
q
∨
p
p \lor q = q \lor p
p
∨
q
=
q
∨
p
结合
(
p
∧
q
)
∧
r
=
p
∧
(
q
∧
r
)
(p \land q) \land r = p \land (q \land r)
(
p
∧
q
)
∧
r
=
p
∧
(
q
∧
r
)
德摩根
¬
(
p
∧
q
)
=
¬
p
∨
¬
q
\neg(p \land q) = \neg p \lor \neg q
¬
(
p
∧
q
)
=
¬
p
∨
¬
q
或
¬
(
p
∨
q
)
=
¬
p
∧
¬
q
\neg(p \lor q) = \neg p \land \neg q
¬
(
p
∨
q
)
=
¬
p
∧
¬
q
分配
p
∨
(
q
∧
r
)
=
(
p
∨
q
)
∧
(
p
∨
r
)
p \lor (q \land r) = (p \lor q) \land (p \lor r)
p
∨
(
q
∧
r
)
=
(
p
∨
q
)
∧
(
p
∨
r
)
或
p
∧
(
q
∨
r
)
=
(
p
∧
q
)
∨
(
p
∧
r
)
p \land (q \lor r) = (p \land q) \lor (p \land r)
p
∧
(
q
∨
r
)
=
(
p
∧
q
)
∨
(
p
∧
r
)
吸收
p
∨
(
p
∧
q
)
=
p
p \lor (p \land q) = p
p
∨
(
p
∧
q
)
=
p
或
p
∧
(
p
∨
q
)
=
p
p \land (p \lor q) = p
p
∧
(
p
∨
q
)
=
p
条件等价
p
→
q
=
¬
p
∨
q
p \rightarrow q = \neg p \lor q
p
→
q
=
¬
p
∨
q
双条件等价
p
↔
q
=
(
p
→
q
)
∧
(
q
→
p
)
p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)
p
↔
q
=
(
p
→
q
)
∧
(
q
→
p
)
假言
p
→
q
=
¬
q
→
¬
p
p \rightarrow q = \neg q \rightarrow ¬p
p
→
q
=
¬
q
→
¬
p